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Abstract: Linear programming formulations of forest ecosystem management (FEM) problems
proposed in the 1960s have been adapted and improved upon over the years. Generating management
alternatives for forest planning is a key step in building these models. Global forests are diverse,
and a variety of models have been developed to simulate management alternatives. This paper
describes iGen, a forest prescription generator that employs a rule-based system (AI-RBS), an Al
technique that is often used for expert systems. iGen was designed with the goal of being able to
generate management alternatives for virtually any FEM problem. The prescription generator is not
designed for, adapted to, focused on—and ideally not limited to—any specific region, landscape,
forest condition, projection method, or yield function. Instead, it aims to maximize generality,
enabling it to address a broad range of FEM problems. The goal is that practitioners and researchers
who do not have and do not want to develop their own alternative generator can use iGen as a
prescription generator for their problem instances. For those who choose to develop their own
alternative generators, we hope that the concepts and algorithms we propose in this paper will
be useful in designing their own systems. iGen’s flexibility can be attributed to three key features.
First, users can define the state variable vector for management units according to the available
data, models (production functions), and objectives of their problem instance. Second, users also
define the types of interventions that can be applied to each type of management unit and create
a rule base describing the conditions under which each intervention can be applied. Finally, users
specify the equations of motion that determine how the state vector for each management unit will
be updated over time, depending on which, if any, interventions are applied. Other than this basic
structure, virtually everything in an iGen problem instance is user-defined. iGen uses these key
elements to simulate all possible management prescriptions for each management unit and stores
the resulting information in a database that is structured to efficiently store the output data from
these simulations and to facilitate the generation of optimization models for ultimately determining
the Pareto frontier for a given FEM problem. This article introduces iGen, illustrating its concepts,
structure, and algorithms through two FEM example problems with contrasting forest management
practices: natural regeneration with shelterwood harvests and plantation/coppice. For data and iGen
source programs, visit github.com/SilvanaNobre/iGenPaper.
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The forest ecosystem management (FEM) problem can be defined as characterizing
the Pareto frontier for the problem of selecting a management prescription for the duration
of some planning horizon for each forest management unit within a specified planning
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area, given a set of management and policy objectives and constraints. A management
unit is defined here as either a contiguous area to be managed with a single prescription or
as a collection of similar areas to which a common set of management prescriptions can
be applied and for which the associated inputs and outputs for a given prescription will
be sufficiently similar. While other approaches could be used to solve the FEM problem,
this paper focuses on situations where the problem will be formulated as either a linear
program (LP) or mixed-integer linear programming (MIP) problem [1]. To formulate this
problem, one needs to have (1) a set of forest management units, (2) a set of management
prescriptions for each unit, and (3) a set of management constraints and objectives. It is also
necessary to quantify the contribution of each management alternative to each constraint
or objective, i.e., the relevant inputs and outputs associated with each prescription for a
given management unit [2]. For the purposes of this paper, we refer to any problem that
fits this definition as a FEM problem. FEM problems are frequently quite complex, and
considerable research has gone into the development of decision support systems to assist
forest planners in finding efficient solutions to such problems [3-9].

A forest ecosystem management decision support system (FEMDSS) is a software
system that facilitates the formulation, solution, storage, and interpretation of FEM
models [3,6,8,10-17]. It must be able to project the state, including the associated in-
puts and outputs, of each management unit under each possible management prescription
for the entire planning horizon. It must then be able to use the information generated about
the projected states (and inputs and outputs) of each management unit to formulate and
solve a set of optimization models, store the solutions of these models, and use the solution
information to enable decision-makers to visualize and understand the attributes of the
Pareto frontier and the implied tradeoffs among objectives. Therefore, the key tasks that
a FEMDSS must accomplish are: (1) generate alternative management prescriptions for
each management unit; (2) formulate one or more models to identify an optimal manage-
ment prescription for each management unit, given various management objectives and
constraints; (3) solve the optimization model(s) formulated in step 2; and (4) interpret the
solution(s) to the management problem (Figure 1).
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Figure 1. Key components of a forest ecosystem management decision support system.

Most of the literature related to the FEMDSS problem has addressed questions re-
lated to the formulation (Step 2 in Figure 1) and solution (Step 3) of these optimization
models [3,10,18-26] or to the problem of generating and/or visualizing the Pareto frontier
for multi-objective problems (Step 4) [27-29]. This paper focuses on the alternative genera-
tion process within a general FEMDSS framework (Step 1). Since the 1960s, numerous forest
management alternative generators have been developed [11,30-32]. To our knowledge,
however, no one has developed an alternative generator for a FEMDSS that can be applied
to any and all FEM problems. The perceived need for multiple generators arises due to
the unique features of each FEM planning problem, which existing solutions often cannot
handle [33]. Various FEM problems differ in the types of management regimes, outputs
(e.g., wood, wildlife habitat, carbon storage), and production functions used to predict
inputs and outputs for each management alternative. Growth and yield models, the most
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common production functions, vary widely, ranging from simple yield models [34,35] to
more complex individual tree models [36,37] and process-based physiological models [38].
Moreover, models used in different regions frequently require different inputs (e.g., age, site
class, basal area, forest type, tree list) and provide different output information (e.g., species
mix, product mix to meet local market demand). Therefore, forest planners have felt the
need to develop their own alternative generators tailored to their specific FEM problems.

According to Eriksson and Bergh [39], an effective stand simulator should be able
to cover a broad problem domain and generate a range of management options for each
stand so that preferred management strategies for each management unit can be assessed
in the context of identifying an overall optimal strategy for the forest as a whole, using
either linear programming (LP), mixed-integer linear programming (MILP), or heuristic
techniques. The alternative generation phase is the initial step of a FEMDSS and the step
that deals with the specific forest conditions that vary most from one planning instance to
another. While all FEM planning problems have unique features, the goal of this research
was to design a generic FEM alternative generator that can accommodate virtually any
forest management problem. To accomplish this, we have developed a software program
called iGen.

This paper describes the key features of iGen that we believe give it the flexibility to
generate forest management alternatives for a wide variety of forest management planning
instances. Building on the developer-group strategy described by Eriksson and Bergh [39]
that allows users to openly define variables, the goal was to create a system where virtually
everything except the basic structure of the system is user-defined. This includes (1) the
state variables, (2) the production functions—which we call “equations of motion”—that
simulate the development of each management unit’s state through each possible alter-
native and calculate the associated inputs and outputs, (3) the types of interventions that
forest managers can apply to management units and how they will affect the equations
of motion, and (4) the conditions under which a given intervention can be applied. We
demonstrate this flexibility by showing how iGen works for two very different FEM prob-
lems. It is important to note that iGen does not formulate optimization models (Step 2 in
Figure 1). It is only designed to simulate management alternatives for such models (Step 1).
iGen’s output is a database that stores the resulting information about each management
alternative. Modules to read this database, formulate optimization models (Step 2), and
interpret the solutions to the optimization models (Step 4) are under development and will
be described elsewhere. Many off-the-shelf software products already exist for solving LP
and MIP optimization models (Step 3).

iGen is based on an artificial intelligence (AI) rule-based technique [40-42]. Forest
planning analysts will use iGen to build a rule base that provides them with complete
flexibility and control over the alternative-generation process. Artificial intelligence rule-
based systems (AI-RBS) are one of the earliest Al techniques and were first developed
in the 1970s [40-42]. These techniques are the simplest form of artificial intelligence
and mimic the reasoning of a human expert in solving a knowledge-intensive problem.
In other words, AI-RBSs encode human expert knowledge about a specific topic into
an automated system; they are often used to comprise an expert system [43,44]. An
AI-RBS reproduces deductive reasoning mechanisms by employing logic rules made of
conjunctions of conditions to verify a set of actions to execute [45]. Several authors have
emphasized the use of rules to enhance the flexibility of FEMDSSs and have used them
to address various problems [12-16,46—49]. These rules are often applied to predefined
conditions, possible forest interventions, or projection methods for growth and yields [17].
What is different about iGen is that it has been designed to provide maximum flexibility so
that it can be applied to as wide a range of FEM problems as possible.

While the AI-RBS methodology is simple in concept, it has been widely used to
solve complex problems. For example, health applications of AI-RBS are becoming more
advanced and capable of delivering innovative services for improving the quality of life
and promoting wellness and a healthy lifestyle. Medical diagnosis applications often use
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AI-RBSs with medical image processing to select surgical strategies and for other medical
tasks [50-55]. In reviewing applications of AI-RBS in health systems, both Matsuyama [56]
and Abdullah et al. [57] have concluded that this way of organizing knowledge can increase
the flexibility of software systems and that it is more efficient than conventional approaches,
in some cases increasing the confidence in the value of the results to 95%. al Fryan et al. [54]
recommend using these technologies in other fields of study due to the efficiency of the
processes. Beyond medicine, rule-based techniques, combined with other information
technology methods, have been applied to a variety of research areas, including electric
pump controls [58,59], power distribution networks [60], floor plan analysis [61], welding
process control [62], air conditioning systems [63], investment analysis [64], and many
others. Minutolo et al. [45] assert that the most relevant component of such applications is
the AI-RBS. AI-RBS has been widely and successfully applied because it is one of the most
common and naturally explainable frameworks for knowledge representation [65].

This paper breaks down the alternative generation process within a general FEMDSS
framework into the key elements of state descriptor variables, interventions, rules for when
interventions can occur, and equations of motion. It describes the application of these
concepts in iGen, an open-source alternative generation software product. The software is
open so that it can be collaboratively developed to address a wide range of FEM problems
across the globe. The remainder of the paper is organized as follows: Section 2 describes
iGen’s structure: the required inputs, how it works, and its outputs. Section 3 shows
how iGen works in the context of two very different example problems. In the interest
of brevity, the examples are intentionally simple and small and are intended to illustrate
how each of the iGen components—the state variables, the possible interventions, the
intervention rules, and the equations of motion—are specified in different contexts. Finally,
Section 4 summarizes the contributions of this research and discusses future work in the
development of a complete FEMDSS, with iGen as the foundation.

2. Materials and Methods

This section describes how iGen applies the rule-based system Al technique (AI-RBS)
to generate management alternatives. The approach is designed to maximize flexibility
to allow it to be applied to as wide a range of FEM applications as possible. This section
first describes the structure of the management alternative generation process, its elements,
and the role of each element in the alternative generation process. Then it describes
iGen, an application of AI-RBS for the generation of forest management alternatives for
forest planning.

2.1. The Structure of the Management Alternative Generation Process

To model any FEM planning problem, we must identify a set of variables that describe
the state of a management unit at any given time, a list of possible management interven-
tions for each management unit, and the “equations of motion” that describe how the state
of a management unit changes over time, either with or without management interventions.
For the state of a management unit, we assume the following:

e  The initial state of a management unit i at time {; < 0 (e.g., the time when the
last intervention occurred in the management unit or the most recent time with
available inventory data) can be described by an initial state vector of n attributes
Xito = [xitollxitOZ -« Xitgn |7

e  The state of the forest can be described by aggregating the states of individual man-
agement units, and the state of one unit does not depend on the state of other units;
The initial state of each management unit is a known set of values for X ;

The set of attributes for a management unit at a given time includes all attributes
needed as inputs to the equations of motion and any relevant inputs and outputs
associated with that management unit at that time.
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We must also be able to update the state vector as a function of any management
intervention (or non-intervention) that may occur. This is accomplished through equations
of motion, which can be specified as follows:

Xitj = f(Xip-1, Lirj) 1

where:

t is a time period,

j is a possible state trajectory (“Trajectory” is used here to describe the path followed
by the state vector over time, which is governed by the equations of motion and the
interventions that are applied to the management unit.) for management unit i,

Xiyj is the vector of attributes for management unit i in period f for trajectory j,

Iyj is an intervention that is applied to management unit i in period ¢ on trajectory j.

Note that since the state vector includes both variables that describe the state of the
management unit and variables quantifying inputs and outputs, these equations of motion
must project (1) growth and yield, (2) management costs, and (3) ecosystem services or
attributes for that unit that may enter into objectives or constraints in the optimization stage.
However, this does not include attributes that depend on the state of or activities on more
than one management unit, such as adjacency restrictions or transportation costs when
products can be shipped to more than one destination, depending on what is supplied from
other units. Factors such as these must be addressed in the optimization model formulation
module (Figure 1—Step 2),

Finally, the set of possible management interventions and the conditions under which
they can be applied must be specified. Subsequently, intervention rules are defined by
the analyst based on managers” knowledge of potential interventions and when they can
be applied.

iGen provides a flexible environment where users can define each of these elements
according to the requirements of their management situation and the available production
functions for their problem, so that alternatives can be generated in iGen for virtually any
FEM problem. The next section describes how iGen accomplishes this.

2.2. iGen Description

Considering the structure of the FEM problem described in Section 2.1. iGen we apply
rule-based system principles to the problem of generating forest management alternatives
in the context of an FEMDSS. iGen was written in Python [66]. The user interface was
built with open-source Python packages: Taipy [67], Pandas [68], and Plotly [69]. This
section describes the iGen elements and how they work together to generate management
alternatives for each management unit of a given forest. The iGen elements are designed
to enable the application to enumerate all possible ways a given forest management unit
could be managed.

2.2.1. iGen Elements
State Variables

iGen requires users to define the set of variables that describe the initial and subse-
quent states of each management unit based on their specific instance of the FEM problem.
The state-descriptor variables must describe all relevant attributes of the management unit
and enable the projection of the state of the management unit and any relevant inputs and
outputs. In addition to the inputs needed for the equations of motion, users must include
state variables for any inputs or outputs that will be relevant in the model-building stage.
For a typical FEM problem, state variables could include age, basal area, forest type or
species composition, site quality, standing and harvested wood or non-wood product quan-
tities, biomass stock, carbon stock, the carbon sequestration rate, other ecosystem service
indicators, equipment requirements, revenues, and the cost of management activities. The
state descriptor vector is flexible and can also include a matrix—for example, a tree list and
the attributes of each tree in the list.
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After defining the state-descriptor variables, the analyst must populate the initial
state-descriptor variables based on the initial condition of each management unit in their
forest. The initial conditions need not be at time zero. Since data may not be available for
the current state of the forest, iGen can update the most recent state data to the present
using the equations of motion with no interventions. Thus, for a given instance of iGen,
the initial state of each management unit within the forest of interest is specified by a set of

initial values for the variables Xj;, = [x ity Xitg2 - - - xiton}.

Set of Intervention Types

Interventions are management activities that can alter the character of a forest. The
stand of trees in each management unit will grow and develop according to its condition
until the managers intervene. Interventions could include any silvicultural treatment,
harvesting, or even a business intervention like an ownership change. How management
units evolve after an intervention is central to decisions because forest sustainability and
growth rates are controlled and either enhanced or harmed by human interventions.

As with the state variables, the interventions in iGen are user-defined. In iGen, an
intervention is any event that can be planned, for which the rules for applying the interven-
tion can be defined, and for which the impact of the intervention on the equations of motion
can be defined. iGen does not consider random disturbances. Also, non-intervention,
where no activity is planned, is treated as a particular type of intervention in iGen and is
considered a feasible management option by default, although this can be overridden in
the case of mandatory treatment.

In an instance of iGen, the analyst must define the set of valid intervention types,
I =1[h, I,...I], that can occur in their forest. In addition, the initial state of a management
unit must include the last intervention that happened in that unit and when it occurred.
This is because many rules depend on what kind of intervention occurred last and when
it occurred. The initial state is what rule-based system principles call “the set of facts of a
beginning state” [44].

Equations of Motion

Left free to grow and affected solely by the forces of nature, forests change, and
understanding the change that can occur is critical for forest planning efforts [1]. Equations
of motion are used to describe these biological changes mathematically. Understanding and
representing those changes is a crucial requirement of the forest planning process. Each
state variable must have an equation of motion that describes how that variable evolves
over time. The specific equation of motion for a variable x, € X is a function of the vector
of state variables from the previous period and the intervention type occurring in the period
(Equation (2)).

Xitnj = fn(Xit-1j litj) @)

where i is the index of the management unit, ¢ is the index of the period, # is the index of the
specific state variable, and j is the index of the state trajectory. Note that the intervention
I;+, can be a non-intervention, in which case the function should compute the development
of the management unit in the absence of any management activity. In the case of a regular
intervention, the function should calculate the result of the intervention, including any
natural growth.

iGen allows the user to specify the equations of motion in several ways. When the
equations of motion are very simple, they can be entered directly using a relatively natural
interface. For example, the management unit number could be assumed to remain constant
over time. This can be specified as follows: MgmUnit = :MgmUnit, where MgmUnit is the
state variable for the management unit number. The age of a management unit will, in
general, always increase by one period length per period. This can be specified as follows:
Age = :Age + PerLen, where Age is the state variable for the age of the stand and PerLen is
a global variable for the length of a planning period. Anything that can be expressed as
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a simple function of one or more of the state variables can similarly be entered using a
simple algebraic representation of that function. Where the value of a state variable can
be expressed as a simple function of discrete variables, users can specify the equations of
motion as a look-up table (e.g., a yield table). For more complex equations of motion, iGen
allows the user to call an external user-defined function.

Rule Base

In the context of an AI-RBS, a rule consists of two parts: the IF part and the THEN
part. It relates the facts in the IF part to some action in the THEN part. The IF part is called
antecedent (or condition), and the THEN part is called consequent (or action). Thus, a
simple rule can be expressed as: IF antecedent, THEN consequent. Each rule states that
if certain conditions are met, then certain conclusions can be inferred [43,44]. A rule base
is a particular type of knowledge base that consists of three essential elements: (i) a set
of facts relevant to the beginning state of the system; (ii) a set of rules describing actions
that should be taken as a function of the current state; and (iii) a termination criterion
that determines when a solution has been found [44]. A rule base aims to encapsulate
expert information and provide this knowledge to others through an AI-RBS. In iGen, this
knowledge is used to identify and simulate feasible management alternatives for each
management unit. These elements are embedded in an information technology system that
has at least the following components: (i) a knowledge base with the rules and termination
conditions; (ii) a database with the beginning state; and (iii) an inference engine. The
inference engine combines reasoning methods and the knowledge base for each state to
reach a solution [44,56]. The inference engine goes through the beginning states, checks
the applicable rules, and executes the “consequent” for each matched rule whenever the
antecedent is found to be true. The inference engine performs these processes until a
termination condition is reached. At this point, the inference engine presents a solution to
the initial question [70].

In iGen, rules describe the conditions under which interventions may be applied to
management units. In other words, a rule is a Boolean function that returns false when
an intervention cannot be applied and true when an intervention can be applied. Rules
specify the sequence in which interventions can be applied, so they are built on the last
intervention that occurred in a management unit and the subsequent evolution of the state
of the unit since the last intervention. Thus, given two intervention types, Ij;s; and Loy, we
say that a rule r, € R is a Boolean function representing the condition for the application of
Inext given that Ij,5 occurred and given the current state of the management unit.

R={[r1, rp... tn] 3)

'm = f(llust ’ Inext ’ Xz‘,t,j) (4)

where f is a boolean function.

Since the state of a management unit is evolving over time according to the equations
of motion, the values of the state variables change over time, so the rules are reevaluated
in each period. So, after an occurrence of an Ij,, a rule can return false in a sequence of
periods until eventually the rule returns true and the intervention I;.y; can be applied.

As described earlier, a rule has two parts: an antecedent, or condition, and a con-
sequent. Accordingly, once iGen has evaluated the condition for applying a rule, if the
rule returns true, the next step is to create a branch where one branch assumes that no
intervention will occur and the other assumes that the corresponding active intervention
will occur. For each branch, iGen applies the equations of motion for each state variable
for the given management unit, in one case with no intervention and in the other with
active intervention. If the rule returns false, the next step is to continue assuming that
no intervention will occur. Multiple rules may return true for a management unit at a
single point in time, so it is possible to create multiple branches, each representing different
interventions. For a given node, however, only one no-intervention branch is created.
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In summary, an instance of iGen includes a user-defined set of rules R = [ry, r... 7]
according to the specifics of the given forest planning situation. Each instance has a unique
set of rules that determine how the interventions can be sequenced to generate a complete
set of alternatives. The analyst builds this rule base using natural language expressions
consisting of if-then statements based on the current values of the state-descriptor variables.

Network Graph

The management alternatives for each management unit are stored as a network graph.
A single, non-loop-directed tree graph [71] is stored for each unit. The first node of each
graph contains the initial state data for the corresponding management unit based on the
most recent data available for that unit. This may correspond to period zero or any period
before period zero of the planning horizon. When the most recent data are from a period
prior to period zero, iGen automatically updates the management unit’s state to time zero
using the equations of motion. Each node of the graph stores the state of the management
unit at a given point in time for a given prescription (i.e., the state trajectory). All the
edges of the graph have a length of one period, and the total length of the graph equals the
planning horizon plus any nodes representing the state of the management unit prior to
period zero.

iGen systematically processes each node in the graph until it reaches an ending point
that represents the projected state of the management unit at the end of the planning horizon
for that trajectory. For each node that is processed, at a minimum, a new non-intervention
node is created for the subsequent period, representing the management unit’s natural
development when no active intervention can be applied. When an active intervention
can be applied, a new intervention node is also created, and the state variables for the
management unit are updated with the equations of motion assuming the intervention
occurs. Figure 2 shows an example of a graph developed by iGen and its elements.

Planning Horizon |

|« -|
1 » 2 » 3 p a4 p 5 »@»@» 8 » 9 p» W p 1 p 12
‘\ “‘

eb 18 > 19 » 20 » 21 » 22 @
Legend: \
° ! @ o

intervention node  non-intervention node non-intervention node where rule condition is true, so
an Intervention node can be applied at the same

period

(*)A hypothetical management unit where the last intervention of type I, represented by the initial node a, happened three periods before the
planning horizon. The Inference Engine grows the unit until Interventions of type I, can be applied and represented by nodes b, ¢ and d.

Figure 2. An example management unit network graph generated by iGen.

The management unit graphs and the underlying database that stores them are the
main outputs of the application. The graphs contain all simulated state data (including
inputs and outputs) for all possible management alternatives for each management unit
according to the rules specified in the rule base. Each node of these graphs has a vector of
attributes calculated according to the equations of motion. The resulting graphs show the
feasible evolution of the forest state over time for each management prescription.
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Relational Database

All the elements of the graphs, including parameters, inputs, outputs, rule bases, and
equations of motion, are stored in a relational database. Table 1 shows the key elements
and the tables where they are stored. As discussed above, the analyst must specify the set
of state variables, the set of intervention types, the equations of motion, the initial state
of each management unit, and build the rule base. Those elements are the inputs of the
application. Also, the analyst must specify some general parameters such as the planning
horizon, period length, name of the model, and other parameters related to the graph shape,
as the graph can be visualized as either a table or a graph. Examples of these inputs and
outputs are presented in Section 3. Figure 3 shows a diagram of entities and relationships
(DER) in an iGen database. The DER also shows how the tables described in Table 1 are
related to each other.

Table 1. iGen database tables where the elements are stored.

iGen Elements Input or Output El: i’liixzrgtiz d
Set of state variables Input Variable
Set of Intervention types Input InterventionType
Equations of motion for non-Intervention nodes  Input Variable
Equations of motion for intervention nodes Input RuleCondtion
Rule base Input Rule and RuleCondtion
Initial nodes Input Nodes
Graph Output Nodes
General Parameters Input Parameter

MgmUnit Parameter InterventionType
PK MgmuUnitid PK Parameterid PK IntTypeld

Area ParameterDescription IntTypeDescription

Distance ParameterValue NodeColor

OtherAtributes

Nodes

PK Nodeld PK Variableld PK Ruleld
PreviousNode Scope FK Lastintervention
LiNode Required FK Nextintervention

FK NodeType VarType RuleDescription

FK MgmUnit EquationO fiotion

FK Intervention <+
Period ) -+
Age
Area
Yield set of variables - A 7 R
Distance -t eqch database has a RuleCondition
CicleCount i
AoYeh diferente one PF Ruleld
GenMatGrp PK IfOrThen
Stratum PF RuleVar

— RuleExpression

PK- Primary Key; FK- Foreign Key; PF— Piramary and foreign Key

Figure 3. Diagram of entities and relationships of the database for an instance of iGen.
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The database must be dynamic. Depending on the unique characteristics of the FEM
problem, the analyst defines the set of state variables that will describe the management
units. Those variables will be rows in the Variable table, and they will be columns in the
Nodes table. Also, there must be an equation of motion for each variable. In some cases, the
equations of motion used to update the state of a management unit can be stored directly
in the Variable table; in other cases, a link is stored to the external function implementing
more complex equations of motion.

The analyst can define the MgmUnit attributes according to specific forest character-
istics and planning needs. The Nodes table has one attribute to connect each node to its
previous node (PreviousNode) and another to connect each node to the last active interven-
tion (LiNode). Also, there is an attribute to identify the node type (NodeType). The other
fields in this table are user-defined elements of the set of state variables.

The Rule table is related twice to the InterventionType table, one for the last intervention
and one for the next intervention. The Rule condition function compiles all RuleExpression
attributes for the same rule when IfOrThen equals “IF”. The equations of motion for each
variable and each rule (or a pair Ij;5—Iext) are stored in the attribute RuleExpression in the
RuleCondition table when IfOrThen equals “THEN".

2.2.2. iGen Algorithm: The Inference Engine

The Inference Engine (I_Engine), as the algorithm of a rule-based system is called,
applies the rules to the initial nodes and builds a tree graph, as in Figure 2. To start, I_Engine
considers all initial nodes as nodes-to-be-opened and puts them in a list (“nodes-to-open”).
The opening process is recursive. New intervention nodes go to the “nodes-to-open” list as
they are created, but I_Engine processes an entire non-intervention path until it reaches the
end of the planning horizon. When I_Engine finishes the opening process for one node,
it sets it as an “opened-node” and then it opens the next node in the “nodes-to-open” list.
I_Engine continues this process until the “node-to-open” list is empty.

The node-opening process involves nine steps. Figure 2 provides an example to
illustrate the opening process. Figure 4 shows the nine steps in a flow chart.

Begin

Prepare Initial
nodes to open

non-intervention new non-intervention node

node and
connect it

2 - Create a 3 - Perform State update for the ]

4 - Filter the rules that
can be applied

Try one rule

N\
/ \

“Jrue

1,8 - Get one 5a,b - Create and connect

/

node-to-open '\z.{mat(h?ﬁ»' an Intervention node
“YFalse L 2
5c¢ - Intervention state
6 - Repeat update
for all w

filtered rules N AT TR
NJules? / list of nodes to open

/
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until Horizon d
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Figure 4. Flow chart of the inference engine algorithm.
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1.  I_Engine gets an intervention node from the “nodes-to-open” list. In our example
(Figure 2), an intervention I; happens in node a:Iy.

2. I Engine creates a new non-intervention node in the following period (node #1 in
Figure 2) and connects it to the current node being processed (node a:I; initially).

3. I_Engine uses the equations of motion for each variable to update the forest state for
the new node.

4. I_Engine filters the rules to select only those with I; as the last intervention.

5. For the first rule (Ij,s¢, Inext) = (I1, I2), I_Engine runs the rule Boolean function.

e Ifitreturns True—i.e,, if the conditions for applying the intervention are met—I_Engine:

(a) Creates a node with an intervention I, in the same period,
(b) Connects this node to the previous node,
(c) Evaluates the equation of motion for the intervention 12 for each state

variable to determine what happens when I, occurs, and
(d) Unless the new node occurs at the end of the planning horizon, add this
new node to the “node-to-open” list.

e Ifitreturns False, I_Engine does nothing.

6. I_Engine repeats step 5° for each rule in the filtered list of rules.

I_Engine repeats steps 2° through 6° until the end of the planning horizon.

8. I_Engine returns to the nodes-to-open list and picks the next one. In our example,
node a:I; will no longer be in the list, but there will be two others to open: b:I,
and c:Ip.

9.  I_Engine repeats steps from 1° to 8° until the node-to-open list is empty.

~

Applying the above algorithm to the example in Figure 2, I Engine begins by opening
the node a:Iy; it then:

(a) generates nodes1to 12;

(b) finds a match at node 6, creates node c:I, connects it to node 5 (the node previous to
node 6), and sets c:I, as a “node-to-open”;

(¢) finds a match at node 7, creates node b:I», connects it to node 6 (the node previous to
node 7), and sets b:I, as a “node-to-open”;

(d) and sets the node a:I as “opened”.

Next, I_Engine opens the node b:I, and generates nodes 13 to 17 without creating any
new intervention nodes to add to the “nodes to open” list. Next, it opens node c:I> and
generates nodes from 18 to 23 and the intervention node d:I. Node d:I is not added to the
“nodes to open” list because it is already at the end of the planning horizon.

The graph in Figure 2 represents four potential prescriptions for this management
unit that apply for the span of the planning horizon. Note that these prescriptions share
many arcs and nodes within the graph. In fact, all four prescriptions share the same path
from the initial node through node 5. Generating prescriptions this way avoids simulating
the shared components of each prescription multiple times. These kinds of efficiencies are
crucial when there are many management units and many management alternatives for
each unit. Additionally, a multicriteria framework typically involves projecting a variety of
ecosystem service indicators, production indicators, and social indicators. In these cases,
simulating state updates for many management alternatives can consume considerable
computer resources. I_Engine can efficiently generate graphs for FEM problems that have
thousands of management units with potentially millions of nodes. The iGen framework
(the inference engine and the representation of the problem as graphs and rule bases) was
developed to optimize the use of planning resources, including computer processing and
analysts’ time.

3. Examples

In this section, we apply the concepts of Section 2 to two FEMDSS problems: a natural
regeneration problem with shelterwood harvests and a fast-growing plantation/coppice



Forests 2023, 14,1717

12 of 24

problem. As stated before, the examples are intentionally simple yet very different. By
choosing these two specific scenarios, we aimed to highlight the versatility of iGen in
addressing diverse forest management challenges and consistently represent the prob-
lems despite their differences. The data for the two examples is attached to this article
in SQLite®. The iGen source programs that can run these examples can be found at
github.com/SilvanaNobre/iGenPaper.

3.1. Pennsylvania Example
3.1.1. Problem Description

To demonstrate how iGen generates alternatives for a management problem, consider
an example of an even-aged forest managed under a natural regeneration regime; we refer
to it as the Pennsylvania example. The Pennsylvania example has eight management units,
each with an area, age, species composition type (forest type), site quality, and the last
intervention that occurred in it. Stand growth is projected with yield curves developed
by Gilabert et al. [72] for natural forests in Pennsylvania. Alternatives are generated for a
110-year planning horizon comprised of eleven 10-year periods. For simplicity, we consider
only two site qualities and two forest types.

3.1.2. Set of State Variables

The state variables chosen for the Pennsylvania example are typical ones, including area,
age, site quality, forest type, yield, yield removed, yield remaining, the last intervention in a
unit, and when it occurred. Two additional variables are defined to facilitate the application
of the required treatment sequences. The variable named TreatReq specifies a required
treatment to apply to the unit, and AfterInt tracks how many periods have elapsed since
the last intervention.

3.1.3. Set of Intervention Types

There are two types of interventions in this example: a shelterwood cut (SWC) and an
overstory removal (OR). In practice, most, but not all, management units require a SWC
prior to an OR to establish advance regeneration. Furthermore, an SWC can only occur
after a specified minimum age. On the better site, site 1, an SWC can be done starting
at 60 years old. On the poorer site, a SWC can occur only after age 70. An OR should
occur in the period following—i.e., 10 years—after an SWC intervention. After an OR, the
regeneration process begins, and the age is set to zero. In management units where an
inventory cruise has indicated that adequate advance regeneration already exists, an OR
can be made without a SWC. A management unit cannot be designated as not requiring a
SWC unless it is already old enough to be harvested, and this condition is valid only for the
current rotation. Subsequent rotations will assume that an SWC treatment will be required,
and the general rule requiring an SWC followed by an OR will apply.

3.1.4. Initial State

With these definitions, we can define the initial state for the management units. Table 2
shows the initial states of key variables for the first three management units. Note that the
columns of the table match the previously defined set of state variables. The age refers to
the management unit’s age at the end of the period when the last intervention happened.
Management Unit 1 was harvested (OR) 60 years ago and requires a SWC before an OR
can be conducted. Management Unit 2 was harvested 50 years ago and does not require
a SWC before an OR can be conducted. Management Unit 3 was recently treated with a
shelterwood harvest, and an OR intervention must be applied to this unit in the first period.
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Table 2. Initial State for three management units in the Pennsylvania Example.

. Standing ..
Mgm Site Area Period  Inter-Vention ** Age Spec1‘es‘ Treatment Volume Removed Remaining
Unit * (acre) (Years) Composition Req ** (BF/ac **%) Volume Volume
1 1 100 -6 OR 8 1 SWC 0 0 0
2 1 90 -5 OR 7 2 OR 0 0 0
3 2 120 0 SWC 70 1 OR 6311 2525 3787

(*) Management Unit; (**) SWC-shelterwood cut and OR-overstory removal; (***) Board feet per acre. The initial
states of the other management units are provided in the database Pennsylvania, Table Nodes, delivered as
Supplementary Material.

3.1.5. Equation of Motion

The equations of motion describe the evolution of the state variables over time. An
equation of motion must be specified for each variable. In the Pennsylvania example, most
variables have simple equations that can be specified directly in iGen. For more complex
equations of motion, iGen can call an external function. In this example, only the yield
variables require an external function to calculate updated values.

The value of each variable at the previous node is accessed by writing “:variable-
Name”. So, for example, the equation “Site = :Site” specifies that the value of the site
quality variable does not change. In this example, this is the case for Site, MgmUnit, Area,
SpcComposition, and TreatReq. The expression “Age = :Age + 10” tells iGen to add ten
years to the previous node’s Age variable value. While this seems obvious, iGen is meant
to be general and flexible in the way specific meanings are assigned to variables. The
analyst preparing the problem must give meaning to each variable by writing appropriate
equations of motion. For the yield variables, we call the external function Pennsylvani-
aYield: “=ExtFunctions.PennsylvaniaYield(:Age + 10,[:Site],[:SpcComposition] [9], stocked’,
‘ni’, ‘standing’)”. This function is written by the analyst in Python, and it returns standing,
removed, and remaining volume based on the following arguments: age, site, species com-
position, ecoregion (ecoregion 9 in this case), stocking of the stand, the type of intervention
being simulated (e.g., no intervention (‘ni’), SWC vs. OR), and whether the user wants the
function to return the total volume (‘standing’), the volume remaining after the intervention,
or the volume removed by the intervention. Yields are based on Gilabert et al. [72].

A transcript of this function is provided in Appendix A, and the syntax of the equations
of motion can be seen in the databases delivered as Supplementary Material. Database
name: Pennsylvania; Table: Variables; Column: NolntNodeUpdateRule.

3.1.6. Example Rules

As noted earlier, a SWC can happen a minimum of 60 or 70 years after a management
unit has been regenerated, depending on the site quality. A rule can therefore be created
in iGen to guide the I_Engine during the alternative generation algorithm. The rule for
implementing a SWC is shown in Table 3.

The conditional part of a rule specifies when a particular intervention can be applied.
The consequent part of the rule in Table 3 describes how the management unit’s state will
be updated after an SWC occurs. It is important to note that rules are evaluated based
on the state of the unit at the point in time when the intervention would be applied. To
accomplish this, before a rule is evaluated, the state of the management unit is always
updated first as if no intervention had occurred. Then, the rule is applied based on the
new, updated state. The conditional part is evaluated based on this updated state, and if
the conditional part returns “true” then the intervention state updates are made based on
the state of the unit just prior to the intervention—that is, based on the state at the new
non-intervention node.
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Table 3. The rule for shelterwood cuts in the Pennsylvania example indicates that a shelterwood
(SWC) cut can occur after a minimum age after an overstory removal (OR).

Rule Var Rule Expression

Conditional Part

Age, Site ((:Age >=60) and (:Site == 1)) or ((:Age >=70) and (:Site == 2))
TreatReq (:TreatReq == 'SWC’)
Consequent Part
MgmUnit = :MgmUnit
Site = :Site
Area =:Area
AfterInt =0
Age =5
SpcComposition = :SpcComposition
TreatReq =‘SWC’
Yield = ExtFunctior.ls..PermsylvaniaYield (:Age,[:Site].,
[:SpcComposition], [9],’stocked’,/'SWC’, ‘Standing)
T e ok et
yRemaining = ExtFunctions.PennsylvaniaYield (:Age,[:Site],

[:SpcComposition], [9],’stocked’,’SWC’, ‘Remaining’)

The next rule establishes the conditions under which an OR can occur following an
SWC. Since the OR should occur immediately after a SWC intervention, the RuleCondition
states that when the last intervention was an SWC and AfterInt == 1, then an OR must occur.
And when the I_Engine gets a match for this rule, the consequent part is the same as the rule
described in Table 3, with the following exceptions: (i) age is set to five (we assume that the
intervention happened at the midpoint of the period) on average by the end of the period
(Age =5), and (ii) the treatment required will turn to SWC (TreatReq = ‘'SWC’); (iii) and the
yield functions are called with the parameter ‘OR’ for the intervention type parameter.

Table 4 shows the rule for management units that do not require an SWC prior to
conducting an OR, i.e., management units with LastIntervention = “OR’ and TreatReq = ‘OR’.
Note that in the consequent part of this rule, TreatReq is set to ‘SWC’ so that in the next
rotation, a SWC will be required. Also, the yield functions are called with the parameter
‘OR1." This is because the yield for an OR will be greater when no SWC has been conducted
prior to the OR.

3.1.7. Result

The I_Engine applies the rules to the initial state and generates one network graph
containing all possible alternatives for each management unit. Data related to all graphs is
stored in the database table Nodes, and the results can be visualized as either a graph or a
table. As an example, Figure 5 presents the graph for management unit 2. This management
unit is one where an inventory cruise indicated that an OR can be conducted without a
SWC. Figure 5 shows that the last intervention in unit 2 was an OR that occurred 50 years
ago. From period —5, the I_Engine grows the forest until period 0 (zero), at which point
unit 2 reaches age 57. Then, according to the rules, the I_Engine opens a non-intervention
node (which will leave the unit to grow one period more) and an OR node. Following the
non-intervention path, the I Engine generates the default non-intervention node and one
OR node for each period until the end of the planning horizon. The program then begins
opening the intervention nodes that have not been processed. After each OR node, the
program grows the forest until age 65, because this unit is site 1 (Table 2), and then begins
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creating SWC-OR alternatives for each period until the end of the planning horizon. Table 5
shows the rows of the Nodes table corresponding to the nodes highlighted in Figure 5. Node
43, an OR node, is the first one of the set, and the following nodes refer to it in the column
LiNode (Last Intervention Node).

Table 4. The rule for when an overstory removal can occur without a shelterwood harvest in the
Pennsylvania example.

Rule Var Rule Expression
Conditional Part
TreatReq (:TreatReq == “OR’)
Consequent Part
MgmUnit = :MgmUnit
Site = :Site
Area =:Area
AfterInt =0
Age =5
SpcComposition = :SpcComposition
TreatReq =‘SWC’
Yield = ExtFunctions.PennsylvaniaYield (:Age,[:Site],[:SpcComposition],

[9]’stocked’,’OR1’, ‘Standing)

= ExtFunctions.PennsylvaniaYield(:Age,[:Site],[:SpcComposition],
[9],stocked’,”OR1’, ‘Removed’)

YRemoved

= ExtFunctions.PennsylvaniaYield(:Age,[:Site],[:SpcComposition],

yRemaining [9],’stocked’,”OR1’, ‘Remaining’)

Harvesting with Natural Regeneration
Mgm Unit 2
oo

@ swc
@ o: o

Table 5 . .

@

Site

Intervention
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Figure 5. Management alternative graph for Pennsylvania Example-Management Unit 2. The figure
shows the decision-tree structure created by iGen’s algorithm. It also shows how users can hover
over a node and examine the values of the state variables projected by the system for that node.
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Table 5. Data from the Nodes Table for the Pennsylvania Example corresponding to selected nodes
from Figure 5.

Nodeld Pl;‘:;:s LiNode Period Intervention Age After-Int Yield ReYrri:z)lje d Reﬁzliiing
43 41 2 1 OR 5 0 13,432 13,432
197 43 43 2 ni 15 1 217
198 197 43 3 ni 25 2 1821
199 198 43 4 ni 35 3 4528
200 199 43 5 ni 45 4 7510
201 200 43 6 ni 55 5 10,362
203 201 43 7 SWC 65 0 12,949 5180 7770

Nodeld: Node identification number; PreviousNode: the NodelD for the previous node on the graph; LiNode:
NodelD for the most recent Intervention Node; OR represents an overstory removal; “ni” indicates no intervention;
SWC represents a shelterwood cut; After-Int gives the number of periods since the previous intervention; yields
are in board feed per acre.

Management units 1 and 3 require an SWC before an OR treatment can be applied.
This is indicated by setting the field TreatReq = “SWC”. I_Engine applies a different set of
rules for these units and generates similar graphs, but with different sequences. The graphs
for units 1 and 3 are in HTML files included with the Supplementary Material. Filenames:
Pennsylvanal.html and Pennsylvania2.html.

3.2. Plantation-Coppice Example
3.2.1. Problem Description

The second example of a FEM problem is a fast-growing plantation under a short-
rotation coppice regime that produces biomass or pulpwood [73,74]. We call it the Plantation—
Coppice example. This example has seven management units, with each belonging to a
stratum and having attributes such as area, age, rotation count, and the last intervention
that occurred in it. Unlike the first example, the Plantation-Coppice example has a yield
table with two entries: stratum and age. Alternatives are generated for a 21-year horizon
comprised of twenty-one 1-year periods. For simplicity, we consider only two strata.

3.2.2. State Variables

As with the first example, the state variables for the Plantation—-Coppice example man-
agement units are the typical ones, such as area, age, stratum, rotation count, yield, the
last intervention in a unit, and when it occurred. The rotation count is 1 after the initial
planting, 2 after the first coppice, and so on. When a clearcut is followed by a renewal
planting, the rotation count is reset to 1.

3.2.3. Potential Interventions

The two types of interventions are based on a regular coppice regime: a clear cut
followed by a renewal planting (CCR) or a clear cut followed by sprouting from stumps
(CCS). In this example, only one CCS is allowed, so after a coppice harvest, the next clear
cut must be followed by a renewal (CCR) to plant new genetic material [75].

3.2.4. Initial State

With these definitions, we can define the initial state for each management unit.
Table 6 shows the data for the first four. The columns of the table match the set of state
variables. The age and the yield refer to the management unit’s age in the period when
the last intervention happened. All ages are zero when a clear cut occurs; some are in
the first rotation after the renewal, and others are in the second rotation following a CCS
intervention.
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Table 6. Plantation/Coppice example initial state for four management units.

Last Rotation

Mgm Unit Stratum Area Period Intervention Age Count Yield
1 1 40 -2 CCR 0 1 0
2 1 50 —4 CCR 0 1 0
3 2 54 -2 CCR 0 1 0
4 1 20 -1 CcCs 0 2 0

3.2.5. Equation of Motion

As in the Pennsylvania example, in the Plantation—-Coppice example most variables
have simple equations of motion with no intervention. The equations of motion for
MgmUnit, Area, Stratum, and RotationCount specify that the value of the state variable
does not change. For example, they are written like “Stratum = :Stratum”. In this ex-
ample, the equation for age is “Age = :Age + 1”. Only the yield variable requires a
function (SearchTable) to select yield coefficients from a production table. For this kind
of equation of motion, I_Engine can read a user table (Productivity) using the specified
entries (Stratum, Age) to return the appropriate value (Volume). And it is written like this:
“Yield = SearchTable(‘Productivity’, (:Stratum, :Age + 1), "Volume”)” (The syntax of the equa-
tions of motion for this example can be seen in the databases delivered as Supplementary
Material. Database name: Coppice; Table: Variables; Column: NoIntNodeUpdateRule).

3.2.6. Example Rules

There are three rules related to the two intervention types in the Coppice Example. After
a CCR, we can have either another CCR or a CCS. However, a CCR must follow a CCS. The
rule conditions for the three possibilities are the same. The management units can only
be cut at ages 6 or 7 if they have reached a minimum yield of 200 m3/ha. However, in
periods 1 to 3, older ages up to 9 years can also be cut. The condition part of these rules is
written by the analyst within the iGen context as “((6 <=:Age <=7) or (1 <=:Period <=3 and
6 <=:Age <=9)) and (:Yield >=200)"

When any of these rules is satisfied, a new intervention node is generated, and
I_Engine applies the consequent part of the rules (intervention state updates). The equations
of motion for Area, MgmUnit, and Stratum specify that they remain the same; RotationCount
is set to a value of 1 when a CCR occurs and a value of 2 when a CCS occurs, according to
the logic of a coppice regime; and Age and Yield are set to zero.

3.2.7. Results

As in the Pennsylvania example, the I_Engine generates a graph for each management
unit. Figure 6 presents the graph for management unit 1 of the Plantation—Coppice example.
Unit 1 was clearcut and renewed two years before the beginning of the horizon; therefore, by
the fourth period, it will be possible to cut this unit again. This results in three alternatives
in the fourth period: conducting a CCR, a CCS, or doing nothing and letting the forest grow
(no intervention). This pattern repeats in the following years, according to the rules. For
unit 3, located in a less productive stratum, it is impossible to have a clear cut at age six
because the minimum yield will not be reached yet, making fewer alternatives for that unit,
as shown in file Coppice3.html delivered as complementary material.

Again, I_Engine applies the equation of motion to previous states and saves each state
in the Nodes table. Table 7 shows the part of this table corresponding to the selected nodes
in Figure 6. The CCS node in period 4 is node #15. Nodes 218 to 219 have node 15 as the last
intervention (LiNode). Note that the initial value of RotationCount for unit 1 was 1 (Table 6),
but the CCS intervention changes this value to 2.
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Figure 6. Management alternative graph for Coppice Example-Management Unit 1.

Table 7. Data from the Nodes Table for the Plantation/Coppice Example corresponding to selected
nodes from Figure 6.

Nodeld Previous Node LiNode Period Age Rotation Count Yield
214 15 15 5 1 2 60
215 214 15 6 2 2 100
216 215 15 7 3 2 140
217 216 15 8 4 2 190
218 217 15 9 5 2 210
219 218 15 10 6 2 230

Node Id: Identification number of the node; Previous Node: the node that is immediately before the node; LiNode:
last intervention node that comes before the node.

4. Discussion and Conclusions

The objective of this work was to develop a system for generating alternatives for
a FEMDSS that can be applied to virtually any FEM problem. We call this system iGen.
iGen uses an AI-RBS approach to provide a flexible, efficient, standardized, and compre-
hensive environment for generating management alternatives. iGen’s flexibility can also
be attributed to three key features. First, users can define the state variable vector for
management units according to the available data, models (production functions), and
objectives of their problem instance. In fact, users must define the state variables because
iGen assumes almost nothing about this. Second, users can and must also define the types
of interventions that can be applied to each type of management unit and create a rule
base describing the conditions under which each intervention can be applied. Finally, users
specify the equations of motion that determine how the state vector for each management
unit will be updated over time, depending on which, if any, interventions are applied. This
is perhaps the most challenging part of creating a truly instance-agnostic FEM alternative
generator. However, we have reviewed the most common types of equations of motion
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and have provided a variety of ways to specify them, from simple algebraic expressions
of the state variables to input matrices (look-up tables) to calling user-provided external
functions. This last feature, in particular, should provide users with considerable flexibility
in implementing their particular equations of motion.

With versatile tools such as iGen, researchers and practitioners can enhance the cre-
ation of a comprehensive LP solution space (feasible region). Consequently, during sub-
sequent phases 2 and 3 (Figure 1), the solver has an increased potential to identify the
absolute optimal solution. The more accurate we are in building the feasible region, the
closer we get to the optimal solution.

Other than this basic structure, virtually everything in an iGen problem instance is
user-defined. Thus, while iGen provides a structure for building an FEM planning instance,
it is essentially a “blank slate” where developers define the state variables for management
units, the rules for their management, and the production functions that describe how
management units develop and the associated inputs and outputs under each management
alternative. iGen uses these key elements to simulate all possible management prescriptions
for each management unit and stores the resulting information in a database that uses
a flexible and efficient network structure, reinforcing some authors’ assertions about the
efficiency of network representation [76] versus, for example, a matrix representation. The
database must be flexible to accommodate the fact that most of the information that it must
store is based on user-defined elements. It is efficient because its network structure—as
opposed to the matrix structure typically employed in this step (hence the term “matrix
generator”) —eliminates redundancy and facilitates easy retrieval of information for the
generation of the optimization models that will ultimately be used to determine the Pareto
frontier for a given FEM problem. Of course, only time will tell if there are problem instances
that cannot be modeled by the current version of iGen. We are optimistic, however, that any
such limitations can be addressed in future versions of the software without fundamentally
changing its structure.

While each problem is unique in terms of the specific details of these elements, all FEM
alternative generation problems involve the same key elements: the state description, the
possible interventions, the rules for applying interventions, and the equations of motion for
updating the state variables under each management regime. The fundamental contribution
of the iGen methodology is the identification of these fundamental elements of the FEM
alternative generation process, their definition in a very general way, and the creation of
a modeling framework that gives forest planners the flexibility to specify each of these
elements in a way that is required by their particular FEM problem. To our knowledge, this
has not been done in literature. Ultimately, we hope that iGen—or at least the underlying
concepts—will be used by practitioners and other researchers, providing the forest planning
community with a common framework for building FEMDSSs.

Besides its generality, a key feature of the iGen approach to alternative generation is its
efficiency. First, it efficiently simulates each possible alternative for each management unit.
iGen’s recursive algorithm for generating a graph of alternatives for each management
unit ensures that each arc of the graph needs to be simulated only once. Each node in the
graph is unique, so there is no duplication of information storage, and all data related to
the management alternatives needed for building the LP model or MIP model is contained
in the database. In addition, the rules specified by the user guarantee that only acceptable
and feasible alternatives will be created.

Furthermore, because the graph provides a natural, visual representation of the alter-
natives, it is easy for users to interpret and verify the data generated for each alternative.
Since the equations of motion and intervention rules are written by the forest planning
analyst and not by the programmer, the analyst has full control of the model. This visual
interface allows the analyst to verify and validate the alternatives generated and better
understand the relationships between the evolution of the forest state and the management
prescriptions before building any optimization models. The analyst can also check the
validity of the coefficients that will be used to build an LP or MIP model before it is built to
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ensure that the model’s simulations are producing valid results. This is much easier than
reviewing the coefficients of, for example, an LP model.

Another key feature of the FEMDSS that iGen is a part of is that the alternative
generation process is separate from the model-building process. While other FEMDSSs
also do this [17,39], it is worth highlighting here. In many cases, the alternative generation
process only needs to be done once, while the optimization model-building process will
often need to be performed multiple times. A single set of management alternatives can be
used to build multiple optimization models—for example, when finding the Pareto frontier
of a multiobjective planning problem. A well-defined, flexible structure that provides an
interface between the generation of management alternatives and the model formulation
phase improves the transparency and clarity of the processes for the forest analyst.

While not addressed in this paper, the network structure of the management alternative
database produced by iGen provides a natural structure for constructing an LP or MIP
model. Exactly how this is done will be the topic of a forthcoming paper, but it is easy
to extract the information needed to build objective functions and constraints for LP and
MIP models from the database. Specifically, one can easily construct area (for LP) or
logical (for MIP) constraints, as well as accounting constraints, for any ecosystem service
that was included in the state variable definition. Furthermore, this is easily done for a
variety of model structures, including Model I, Model II [77], and others. Certain kinds of
constraints, such as flow [25], supply chain and market [78], transportation and logistics [79],
adjacency [80], labor [81], and equipment constraints [82], can also be built, but will require
other inputs that are not needed in the alternative generation stage and that can be input at
the LP or MIP model-building stage.

iGen is currently written to only simulate deterministic processes. It is not written
to accommodate stochastic equations of motion. In principle, it would not be too hard
to modify iGen to allow this, but in practice, this could result in extremely large output
databases for realistically sized FEM problems. Nevertheless, this may be an interesting
problem for future development of the system.

The code for iGen is open source, and datasets and equations of motion sample code
for different types of forests are provided on github.com/SilvanaNobre/iGenPaper. We
hope this system will be a valuable resource for practitioners and researchers interested in
the development of FEMDSSs.
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Appendix A

PennsylvaniaYield is an external function written in Python. All external functions
must be saved in a file named ExtFunctions.py which is one of the files of iGen Python
Project.
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11 import math

12 def PennsylvaniaYield(Age, Sitelst, ForestTypelLst, EcoRegionLst, Stock, Intervention,

gamma ='{1:-8.1§182, 2:0, 3:0, 4:0, 5:0.37972, 6:0, 7:0, 8:0.40850, 9:0, 10:0, 11:0

YieldType) -> float:
alfa = {0:9.65161,1:-79.67558}
beta = {1:0.48990, 2:0, 3:-0.90516}
phi = {1:0.23674, 2:0.55308, 3:0.85102, 4:0.31938, 5:0, 6:-0.04277, 7:0.46172}
, 12:0, 13:0}
1da = {'stocked':8, 'understocked':-0.41902}
x_alfa = alfa[0]
if Age > 0:
x_alfa += alfa[1]/Age
x_beta = 6
for iSite in Sitelst:
x_beta += beta[iSite]
x_phi =0
for iFType in ForestTypelst:
x_phi += phi[iFType]
x_gamma = 0
for iERegion in EcoRegionLst:
x_gamma += gamma[iERegion]
x_lambda = lda[Stock]
x = x_alfa + x_beta + x_phi + x_gamma + x_lambda
x = math.exp(x)
if Intervention == 'SWC':
if YieldType == 'Removed':
Rate = 0.4
elif YieldType == 'Remaining':
Rate = 0.6
elif YieldType == 'Standing':
Rate = 1
elif Intervention == 'OR':
if YieldType == 'Removed':
Rate = 0.6
elif YieldType == 'Remaining’:
Rate = @
elif YieldType == 'Standing':
Rate = 0.6
elif Intervention == 'OR1':
if YieldType == 'Removed':
Rate = 1
elif YieldType == 'Remaining’:
Rate = @
elif YieldType == 'Standing':
Rate = 1
elif Intervention == 'ni':
if YieldType == 'Removed':
Rate = @
elif YieldType == 'Remaining':
Rate = @
elif YieldType == 'Standing':
Rate = 1
X = Rate * x
return x

Figure A1. ExtFunctions.py.
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